磷酸锰锂(lithium manganese(II) phosphate),化学式:LiMnPO4,是一种天然矿物或者人工合成的三元锂电池电极材料。该物质具有橄榄石状的晶体结构,导致其作为电极材料时物理化学性质稳定。且磷酸锰锂具有171 mAh/g的比容量以及4.1 V左右的放电平台(vs Li/Li+)这也使得磷酸锰锂成为了新一代锂离子动力电池的理想材料。
物理性质
磷酸锰锂具有橄榄石结构,典型的斜方晶系(空间群:Pmnb),相变点约为760摄氏度,在较高温度下仍能保持其晶体结构。其一维通道可以使锂离子嵌入和脱出,从而使得其可以作为一种锂离子电池的正极材料。磷酸锰锂的密度约为水的3.50倍,磷酸锰锂电导率极低,比磷酸铁锂还要低2-3个数量级,自然界下有稳定存在的磷酸锰锂矿物。
化学性质
磷酸锰锂是无机物,化学性质稳定。不溶于水、乙醇、丙酮及绝大多数有机溶剂。磷酸锰锂在强碱性条件下,二价锰离子容易被氧化。浓盐酸可以完全溶解磷酸锰锂。
磷酸锰锂主要用于实验室阶段的新一代锂离子电池正极材料研发,不同于磷酸铁锂,由于磷酸锰锂大批量合成的难度以及电导率的改善困难程度等原因,国内还没有商业化的磷酸锰锂出售,磷酸锂铁化学分子式为:LiMPO4,其中锂为正一价;中心金属铁为正二价;磷酸根为负三价,常用作锂电池正极材料。磷酸铁锂电池的应用领域有:储能设备、电动工具类、轻型电动车辆、大型电动车辆、小型设备和移动电源,其中新能源电动车用磷酸铁锂约占磷酸铁锂总量的45%。
与其他锂电池正极材料相比,橄榄石结构的磷酸铁锂更具有安全、环保、廉价、循环寿命长、高温性能好等优点,是最具潜力的锂离子电池正极材料之一。
磷酸锰锂的实验室常见制备方法主要有固相法和液相法。固相法采用固态的锂盐、锰盐和磷酸盐球磨混合并在保护气的氛围下高温灼烧。液相法又分为多元醇法、溶胶凝胶法和水热法,液相法合成磷酸锰锂形貌和纯度更容易控制,但是也存在着晶化不完全的问题,常常需要进一步退火灼烧。
目前,固相法是制备磷酸锰锂正极材料的主要方法。虽然固相法工艺简单,工业化生产方便,但是该方法所制备的磷酸锰锂材料存在着颗粒团聚严重,粒径不均一和碳包覆不完整等问题,这将会严重影响材料的循环性能,倍率性能和高低温等性能。而水热法制备的磷酸锰锂材料,其晶体结构完整,无杂质峰,并且颗粒粒径均一和颗粒表面碳包覆层完整等优点,从而显著提高了磷酸锰锂的电化学性能。
1、高温固相反应法
高温固相反应法是制备磷酸铁锂是目前发展最为成熟也是使用最广泛的方法。将铁源、锂源、磷源按化学计量比均匀混合干燥后,在惰性气氛下,首先在较低温度(300~350℃)下烧结5~10h,使原材料初步分解,然后再在高温(600~800℃)下烧结10~20h得到橄榄石型磷酸铁锂。
高温固相法合成磷酸铁锂工艺简单,制备条件容易控制,缺点是晶体尺寸较大,粒径不易控制、分布不均匀,形貌也不规则,产品倍率特性差。
2、碳热还原法
碳热还原法是在原材料混合中加入碳源(淀粉、蔗糖等)做还原剂,通常和高温固相法一起使用,碳源在高温煅烧中可以将Fe3+ 还原为Fe2+ ,避免了反应过程中Fe2+变成Fe3+,使合成过程更加合理,但是反应时间相对较长,对条件的控制更为严苛。
3、喷雾热解法
喷雾热解法是一种得到均匀粒径和规则形状的磷酸铁锂粉体的有效手段。前驱体随载气喷入450~650℃的反应器中,高温反应后得到磷酸铁锂。喷雾热解法制备的前驱体雾滴球形度较高、粒度分布均匀,经过高温反应后会得到类球形的磷酸铁锂。磷酸铁锂球形化有利于增加材料的比表面积,提高材料的体积比能量。
4、水热法
水热法属于液相合成法,是指在密封的压力容器中以水为溶剂,通过原料在高温高压的条件下进行化学反应,经过滤洗涤、烘干后得到纳米前驱体,最后经高温煅烧后即可得到磷酸铁锂。水热法制备磷酸铁锂具有容易控制晶型和粒径,物相均一,粉体粒径小,过程简单等优点,但需要高温高压设备,成本高,工艺比较复杂。
除上述方法外还有共沉淀法、溶胶-凝胶法、氧化-还原法、乳化干燥法、微波烧结法等多种方法。
磷酸锰锂的优点
在目前所报道的一系列正极材料中,LiMnPO4正极材料具有4.1V的高电位,比LiFePO4提高0.7V,且处于现有电解液的稳定电化学窗口。据相似的放电比容量和压实密度测算,LiMnPO4电池的能量密度较LiMnPO4提高约20%,达190Wh·kg-1,且LiMnPO4价格更便宜。与锰酸锂相比,LiMnPO4具有相近的工作电压,但能量密度更高、高温循环寿命更长。与三元材料相比,LiMnPO4具有相似的能量密度,但更安全、价格更低。
磷酸锰锂的缺点
橄榄石结构的LiMnPO4存在一些固有缺陷制约着其发展和应用。表现在以下几个方面:
(1)材料的离子电导率和电子电导率都非常低,导致材料的容量难以发挥;
(2)LiMnPO4与电解质会发生副反应,生成产物Li4P2O7等,随着材料充放电次数的增加,LiMnPO4会逐渐失去活性;
(3)脱锂后形成的磷酸锰(MnPO4)会受到Jahn-Teller效应影响,晶体结构从八面体变成立方相,压缩锂脱嵌通道,造成结构上的不可逆变化;
(4)部分锰离子发生歧化反应溶解在电解液中,导致材料循环性能变差。
针对以上问题的改善方案:
(1)纳米化,缩短锂离子的固态扩散路径,增大电极反应面积,从而提高材料的宏观锂离子电导率;
(2)晶面选控,增大锂离子快速迁移的晶面面积,从而提高材料的微观锂离子电导率;
(3)体相掺杂,通过掺杂原子的原位取代或形成固溶体来稳定晶体结构,提高离子/电子电导率,从而提高材料的循环和倍率性能;
(4)表面包覆,通过在材料表面复合导电碳、金属氧化物层等,提高材料的离子/电子电导率,阻止LiMnPO4与电解液直接接触。
埃尔派为你推荐磷酸锰锂是什么 磷酸锰锂有哪些用途及制备方法。更多新更新的动态信息尽在埃尔派官网,同时你还可以了解电池材料行业其它信息或浏览新闻资讯。